Setting up SNA networking with Hercules using DLSw

I finally broke down and made a quick video on setting up the DLSw ‘lab’ that I had uploaded on Internet Archive.

See it works!

Although I should have gone more in depth with the cisco part.

Namely showing how to check the interfaces, the ethernet l2 traffic, how the DLSw peers, and then the establishment of the circuit once the session is established.

But I wanted to be quick. I don’t think I can edit a video that is up so I’ll probably follow it up with another quick video.

simple network diagram

Trying to put it into words, the Windows 3.1 VM hosts Extra! 4.2 talking SNA to the Loop_SNA virtual Ethernet interface, which then is connected to the virtual cisco router, which also has a TCP/IP enabled interface, Loop_TCPIP, which the host Windows 10 machine can talk to, allowing it to communicate with the Hercules VM which I had compiled to run as a native Win64 EXE for Windows.

Basically, at it’s heart, this is the important part of the cisco config:

source-bridge ring-group 1
dlsw local-peer peer-id 192.168.146.5
dlsw remote-peer 0 tcp 192.168.146.1
dlsw mac-addr 4000.1020.0100 remote-peer ip-address 192.168.146.1
dlsw udp-disable
dlsw transparent switch-support

interface FastEthernet0/0
 ip address 192.168.146.5 255.255.255.0
 no shut

interface Ethernet1/0
 dlsw transparent redundancy-enable 5555.5555.5000
 dlsw transparent map local-mac 4000.1020.0100  remote-mac 4000.0999.0100
 no shut

I used a ‘clean’ VMware virtual machine to host this test, just to show how to do the setup from scratch, taking nothing for granted.

Hopefully this explains it a bit better for those who wanted to know, along with the video to show the high level of it working. Not sure anyone would want to watch me stumble through setting up MVS, along with going into more detail on the cisco config & workstation config.

As always, thanks to 9track for providing the patches, and showing that this whole setup was possible!

Building a 100% virtual SNA network on your desk!

So I have been fighting the Mainframe thing for a while (see part1/part2) and getting nowhere. I couldn’t shake the feeling that it was working, but something on the mainframe side was broken. I just don’t know enough about MVS/VTAM on the host side. Although I have setup and deployed quite a few cisco routers in production doing remote ring groups, translational bridges, and the like, a DLSw connection to SDLC was something I’d never done as I’d always had direct token-ring access to the FrontEndProcessor.

On suspicion that I’ve been talking to the mainframe the whole time is that in the packet trace from Microsoft SNA server I’d see the string UNSUPPORTED FUNCTION in the capture.

Microsoft SNA Server

The LU goes online, but there just isn’t anything to be displayed. Traffic is constantly flowing but it’s always the same, a blank dead screen.

On a fluke I had spotted a copy of Attachmate Extra! 4.20 on eBay for $10. I was able to get someone to get it for me, and fence me a copy of the disks. Configuring Extra isn’t too involved, just set the terminal to type 4, and using the same block/destination address as all the others:

LU #3, and Model 4!

With the usual restricted I-Frame (MTU), and I turned everything on feature wise (it didn’t matter)

I had fired up both OS/2 & NT and with the same empty screen showing nothing. Next I loaded up Extra on Windows 95, and got this:

Unsupported Function
Unsupported Function

Well that was unexpected!

The 3705’s on Hercules can be connected to direclty, so I try c3270 and get this:

Wait, so my suspicion was right?!

I reset the mainframe, and then was greeted with the cat!

Finally!

So what was wrong?!? I’m still not so sure, but turning off the debug on DLSw, let me see that both OS/2 AND Windows NT crash out SNASOL with an abend code of U0020.

ABEND

I’m sure it means something to someone, but not to me. So this is one of those ‘dont do that if it hurts’ type things.

Since I had used Windows 95, as I figured it had more robust networking support than Windows 3.1

Setting up Windows 95 was a minor challenge as Extra! 4 is a Win16 application, and it’s DLC/802.2 support requires you to knock down the 32bit networking support to instead use the 16bit networking drivers. This is what let Extra! attach to it. Of course the following updates/files are needed for Windows 95 on Qemu:

the AMD PCnet driver is built in, so it works the best. Again, I have Dynamips & Qemu using the Microsoft Loopback as their common network, so I can do packet captures, and they both can communicate on the network.

So, of course the other question is, does it work with physical hardware?!

And YES it does!

If anything, using a terminal emulator that doesn’t crash out the host makes it seem all too easy. While I’ve seen SDLC PCI cards on ebay they are rather expensive, and does the ISA card really add anything that you could get over the LAN? Honestly no. Back in the day it really was just what you could get a hold of, and of course logically (virtually) setting stuff up made the 802.2 stuff all the easier to do, instead of leased lines, physical v35 cables, and all that other fun stuff.

With everything said & done, if you want to experience some pseudo fake SNA, go virtual. It’s far more portable, less cables involved, plus it’s self-contained making it more of a conversation piece.

All the hard work is being done by IOS, and it’s functionality like this is why cisco had established itself as king of the multiprotocol networking world. But everything is TCP/IP these days, and Cisco doesn’t commend the same enterprise place as it had once before, making this whole thing a middle point relic of the past. It’s far too new for real FEP/DLC networking, but everything now is TN32720 (telnet 3270).

I guess as a tip for people who buy physical routers is that those super expensive PCMCIA flash cards aren’t needed as long as you have enough RAM. One cool feature of the cisco routers is that the power on bootrom loads up a ‘boot’ version of IOS that is either also burned on ROM, or it’s also in FLASH. You have to remember it was super expensive back then so it may be only a few megabytes of space. The boot IOS can’t route or do anything too useful but it can load the proper IOS from various network sources into memory. My 7200 has one that supports FTP, so I could just drop IOS onto an anonymous ftp server at home.

I guess my ‘old man yells at the clouds’ is that I’ve had to deal with some bug in a remote site where the router didn’t have enough flash to store the image, and the Ethernet cards were too new for the boot IOS to drive, but we had an async card that did work, so I rebooted it to load production IOS over a T1. This one didn’t support FTP, rather it was TFTP, and it took about an hour to load. During that much time I didn’t have console access so I was getting ready to drive the 5 hours to the site, when I barely got onto the highway when I got the call that my ‘fix’ had worked and that the site was online. YAY.

I hope this has helped someone.

SDLC attempt #1

TL;DR it didn’t work, got the exact same result.

Well today was a special day, I got 2 deliveries, one PC SDLC card, and the other being the 4 port high speed serial card for my cisco 7200.

In case you were wondering what was the serial cable, its a CAB-232FC FEM DCE RS-232 cable looks like here is the DB-60 connector side:

And here is the DB-25 side.

VERY RS-232 isn’t it?

Connect the cable to the to the router! Easy!

The router doesn’t have any PCMCIA storage so I configured the thing to get it’s IOS from a FTP server.I have to say that netbooting works great.

Slot the card into the board I found in the trash that has an ISA slot, and we’re off to the races! I wanted try to replicate my NT setup, so Server 3.5 was installing when of course:

Of course this 400Mhz Celeron is going to break the lookup list as anything beyond Pentium is too much. 🙁 I just installed on Qemu instead, and used MS-DOS backup/restore. Yes it worked!

On the SNA server install, I used the IBM SDLC option hoping it was this card I’d bought. I got lucky it was!

Just like 9track.net I kept it ‘leased’ and no constant RTS.

One thing to note about this SDLC card is that it takes IRQ 4 & DMA 1. So there goes any hope of a Sound Blaster or COM1. It’s not the end of the world.

And of course, I got the exact same result as last time.

I don’t know what I’m doing wrong.

I can see the serial interface up and passing traffic, and the DLSW circuit builds and is established.

I’ll either edit this with more details, or just follow up. I’m tired, and my eyes are blurry. But I thought I’d post this much to the world.

Ghosts in the mainframe!

There is a LOT going on in this image, and I’ll try to explain it, but yeah “it’s complicated”.

SNA networking & Hercules has always been a goal for a lot of people, including me as we always wanted to setup some SNA server of some kind. Especially on RISC platforms, as there is only so much fun on SQL server.

Okay I know the practical among you will say, doesn’t it support telnet 3270? Isn’t that good enough? Yes for day to day mundane stuff, absolutely. But I’m not all that interested in that, I wan’t to have the whole ancient network, and I wan’t it self contained and on my desk! Or on a laptop, as I see fit.

What started this whole adventure was a simple image from 9track.net, showing that being able to connect physical devices to Hercules was indeed possible!

Image from https://www.9track.net/hercules/dlsw/

This is a physical IBM 3178 & 3179 terminals talking to TK4- , a MVS3.8j pre-configured system!

The magic that makes this all possible, is a cisco router, running enterprise IOS, with dlsw support.

My setup is going to be inspired by this setup, but not exactly 100% But this is what I’m going to use on Windows 10

  • Dynamips for the cisco router, running JS-M 12.2(25)S8
  • Qemu 0.90 with PCAP running Windows NT 3.51 Server along with SNA Server 2.1
  • Qemu 0.90 running Windows 3.1 and XVision
  • VMware Player
  • WireShark
  • Microsoft Loopback adapter
  • WSLv1

I had originally wanted to run the NT server on VMware but for some reason it just hangs trying to initialise the NT kernel. I didn’t bother trying to troubleshoot it, I just jumped to Qemu. Even service pack 5 didn’t help. VMware left me with the virtual network that will NAT if needed, and of course let me telnet to the Dynamips program. The SNA traffic is isolated to the MS Loopback adapter, which will let pcap programs talk to each other.

The first thing I did was run ‘hdwwiz’ on Windows 10, and added in the KM-TEST loopback adapter

We know what we want, so go to the manuall selection

Network adapters

And select the KM-TEST Loopback Adapter

Next I changed the protocols available on the loopback, as I don’t want my Windows 10 host interfering with the SNA network at all.

So the next thing to do is to get your network GUID’s. ethlist.exe from the Dynamips download will get you that:

C:\dynamips>ethlist.exe
Network devices:
  Number       NAME                                     (Description)
  0  \Device\NPF_{3DF0EC5D-7FBE-46DF-ACF8-EF5D8679A473} (loopback)
  1  \Device\NPF_{D9FBD118-B9DF-4C3C-BD9E-07A0E34D8F75} (Local Area Connection* 8)
  2  \Device\NPF_{F5057901-6A30-413A-80E4-4765DA794B7C} (Local Area Connection* 7)
  3  \Device\NPF_{E3D3EC8D-29C3-4B70-B01C-600D3F9ED1D6} (Local Area Connection* 6)
  4  \Device\NPF_{82EEDBC1-899D-416F-BD51-3DBE2287257F} (VMware Network Adapter VMnet8)
  5  \Device\NPF_{3BC364F4-5A15-405D-926C-C594383F0323} (VMware Network Adapter VMnet1)
  6  \Device\NPF_{DDF1FA94-7488-414F-A41A-EC88C1FB0DE4} (Ethernet)
  7  \Device\NPF_{E7CA8F40-4639-410D-B5CA-F402FE69AF5D} (Ethernet 2)

I want the cisco router to have two interfaces, one with TCP/IP for me to be able to telnet into it (maybe other management as well?!) and the other one for the SNA traffic.

Setting up Dynamips

As mentioned above I’m going to use the VMnet1 for TCP/IP to the router, and the loopback adapter for SNA traffic. To try to make things a little easier to read I setup a small batch file that let’s me plug in variables to Dynamips:

set loopback=\Device\NPF_{3DF0EC5D-7FBE-46DF-ACF8-EF5D8679A473}
set vmnet1=\Device\NPF_{3BC364F4-5A15-405D-926C-C594383F0323}
set IOS=c7200-js-mz.122-25.S8.bin
set NPE=npe-200
..\dynamips.exe -P 7200 %IOS%  ^
-t %NPE%  ^
-p 0:C7200-IO-FE ^
-s0:0:gen_eth:%vmnet1% ^
-p 1:PA-4E  ^
-s1:0:gen_eth:%loopback% ^
-p2:PA-4T+

The caret symbol will break up lines on NT, much like the ampersand will on Unix. And this let’s me use clear variables for the networks, IOS & NPE type so it’s nowhere near as complicated to edit.

This will create a cisco 7200 with an NPE-200, with the following cards:

The next thing is what ip address is bound to VMnet1? This is mine:

Ethernet adapter VMware Network Adapter VMnet1:

   Connection-specific DNS Suffix  . :
   Link-local IPv6 Address . . . . . : fe80::c3d2:c891:b7e0:6797%5
   IPv4 Address. . . . . . . . . . . : 192.168.199.1
   Subnet Mask . . . . . . . . . . . : 255.255.255.0
   Default Gateway . . . . . . . . . :

So all my TCP/IP in this example will be using 192.168.199.0/24

As mentioned on the 9track page, all the magic happens on the cisco router. I’ve made a few changes as I may want to try the SDLC in the future to perhaps some other experiment if I can find an emulator that’ll drive it over serial, but for now let’s just get to the config:

!
version 12.2
service timestamps debug uptime
service timestamps log uptime
no service password-encryption
!
hostname dlsw
!
boot-start-marker
boot-end-marker
!
enable password cisco
!
ip subnet-zero
!
!
no ip domain-lookup
!
ip cef
no mpls traffic-eng auto-bw timers frequency 0
call rsvp-sync
!
!
!
!
!
!
!
source-bridge ring-group 1
dlsw local-peer peer-id 192.168.199.10
dlsw remote-peer 0 tcp 192.168.199.1
dlsw mac-addr 4000.1020.0100 remote-peer ip-address 192.168.199.1
dlsw udp-disable
dlsw transparent switch-support
!
interface FastEthernet0/0
 ip address 192.168.199.10 255.255.255.0
 duplex half
 no clns route-cache
!
interface Ethernet1/0
 no ip address
 duplex half
 no clns route-cache
 dlsw transparent redundancy-enable 5555.5555.5000
 dlsw transparent map local-mac 4000.1020.0100  remote-mac 4000.0999.0100
!
interface Ethernet1/1
 no ip address
 shutdown
 duplex half
 no clns route-cache
!
interface Ethernet1/2
 no ip address
 shutdown
 duplex half
 no clns route-cache
!
interface Ethernet1/3
 no ip address
 shutdown
 duplex half
 no clns route-cache
!
interface Serial2/0
 no ip address
 encapsulation sdlc
 no keepalive
 serial restart-delay 0
 clockrate 64000
 no clns route-cache
 sdlc role primary
 sdlc vmac 4000.0999.0100
 sdlc address C1
 sdlc xid C1 01700019
 sdlc partner 4000.1020.1000 C1
 sdlc dlsw C1
!
interface Serial2/1
 no ip address
 shutdown
 serial restart-delay 0
 no clns route-cache
!
interface Serial2/2
 no ip address
 shutdown
 serial restart-delay 0
 no clns route-cache
!
interface Serial2/3
 no ip address
 shutdown
 serial restart-delay 0
 no clns route-cache
!
ip classless
!
no ip http server
!
!
!
!
!
!
control-plane
!
!
dial-peer cor custom
!
!
!
!
gatekeeper
 shutdown
!
!
line con 0
 session-timeout 35791
 stopbits 1
line aux 0
 stopbits 1
line vty 0 4
 password cisco
 login
!
!
end

This sets up the router so I can telnet to it from my desktop at 192.168.199.10, and allows it to talk to the base Windows machine on 192.168.199.1

All the magical MAC addresses come from 9track.net, as he wrote the dlsw hooks, so I just copied that. There is probably a great deal that could be cleaned up, but once I saw the two talking I kind of froze what I was doing.

With that much in place I then jumped to WSL,and built the emulator from github. I cloned it, and renamed that to herc-dlsw. At least for me this was pretty straightforward. The Hercules fork will build with Visual Studio as well, but I knew I was going to need some kind of tn3270 emulator, and I wanted to use x3270, and I had just recently bought this discounted copy of XVision, so of course I wanted to use that.

Despite this catastrophic defect that wasn’t disclosed in the auction.

I downloaded and extracted the TK4- latest distro on WSL. I just created a ‘herc’ directory in my home to house the tk4- release. The next thing to do is overlay your dlsw enabled exe’s and libraries.

cd ~/herc-dlsw/.libs
mkdir x
cp * x
cd x
rm *.o *.lai
cp *.so $HOME/herc/hercules/linux/64/lib/hercules
cp *.la $HOME/herc/hercules/linux/64/lib/hercules
rm *.so *.la
cp * $HOME/herc/hercules/linux/64

Now with the binaries in place, I do need to setup the Xvision VM so I can receive the X11. Of course there is so many other ways to do this, but this is mine:

qemu.exe -L pc-bios -m 64 -hda xvision.vmdk -net nic,model=ne2k_isa -net user -redir tcp:6000::6000

The important thing is that tcp port 6000 is redirected inwards, and that I’m using the NE2000 card, which on my weird fork will print out the hardware config, so I know how to find the nic.

added SLIRP
adding a [GenuineIntelC♣] family 5 model 4 stepping 3 CPU
added 64 megabytes of RAM
trying to load video rom pc-bios/vgabios-cirrus.bin
added parallel port 0x378 7
added NE2000(isa) 0x320 10
pci_piix3_ide_init PIIX3 IDE
ide_init2 [0] s->cylinders 203 s->heads 16 s->sectors 63
ide_init2 [1] s->cylinders 0 s->heads 0 s->sectors 0
ide_init2 [0] s->cylinders 2 s->heads 16 s->sectors 63
ide_init2 [1] s->cylinders 0 s->heads 0 s->sectors 0
added PS/2 keyboard
ps2.c added PS/2 mouse handler
added Floppy Controller 0x3f0 irq 6 dma 2
installing PS/2 mouse in CMOS
  Bus  0, device   0, function 0:
    Host bridge: PCI device 8086:1237
  Bus  0, device   1, function 0:
    ISA bridge: PCI device 8086:7000
  Bus  0, device   1, function 1:
    IDE controller: PCI device 8086:7010
      BAR4: I/O at 0xffffffff [0x000e].
  Bus  0, device   1, function 3:
    Class 0680: PCI device 8086:7113
      IRQ 0.
  Bus  0, device   2, function 0:
    VGA controller: PCI device 1013:00b8
      BAR0: 32 bit memory at 0xffffffff [0x01fffffe].
      BAR1: 32 bit memory at 0xffffffff [0x00000ffe].

And in this case it’s 0x320 IRQ 10. XVision being it’s own level of disappointment, I’ll have to cover it further, and later but suffice to say it at least catches the x3270 so I can get onto the console.

Setting up Hercules

Editing conf/tk4-_default.cnf is pretty easy as it’s on Linux and you can use VI.

# NCP VTAM
#
0660 3705 lport=${N660PORT:=37051} locncpnm=N07 rmtncpnm=N08 …
          unitsz=252 ackspeed=1000
0661 3705 lport=${N661PORT:=37052} locncpnm=N10 rmtncpnm=N11 …
          idblk=017 idnum=00018 locsuba=10 rmtsuba=11 unitsz=252 …
          ackspeed=1000
0662 3705 lport=${N662PORT:=37053} debug=yes dlsw=yes locncpnm=N12 …
          rmtncpnm=N13 idblk=017 idnum=00019 locsuba=12 rmtsuba=13 …
          unitsz=252 ackspeed=1000
0663 3705 lport=${N663PORT:=37054} locncpnm=N14 rmtncpnm=N15 idblk=017 …
          idnum=0001a locsuba=14 rmtsuba=15 unitsz=252 ackspeed=1000

And it’s simple, just assign the dlsw to the 0662 3705 controller.

The real fun is in the VTAM configuration. Which had been stumping me for well over a year. But then I found this Bradrico Rigg article aptly titled : Run your own mainframe using Hercules mainframe emulator and MVS 3.8j tk4, and it gave me the confidence to get this DONE. Thanks Bradrico!

First get MVS up and running. You have to run the ‘console_mode’ script to see what is going on.

cd herc/unattended
./set_console_mode
cd ..
./mvs

It’s not all that difficult XVision is using SLiRP, so it’s listening on all my IP addresses so I just do a simple

export DISPLAY=192.168.1.72:0
nohup x3270 &

And the emulator will pop up in Qemu. Just connect to localhost:3270 and you’ll be greeted by the login pannel:

Credentials are HERC01 / CUL8TR

I would HIGHLY recommend following the tutorial to get used to submitting a simple COBOL program. It walks through the key concepts of locating a file, and viewing it on MVS. Something that up until yesterday was out of my league.

We need to edit the file S3705 on SYS1.VTAMLST

Basically it’s 1,3,4 from the main pannel:

or RFE, Utilities, DSLIST

Type in the Volume name, then tab over to the left of the volume and put in V to view

Now we will get a list of all the files. We want to edit S3705, so you can tab/arrow down, but sure to put an `E’ next to it, then hit enter so we can edit the file

F7/F8 will page down/page up as needed. As mentioned we are interested in Subarea 13, PU type 2.

The line we are changing is the MAXDATA or MTU size for this unit. Since we are doing dlsw, or an emulated serial link, we need to knock it down to 256. Notice all the plus signs on the right hand? THOSE ARE IMPORTANT! Not only do they need to exist, but they also have to be on the far right.

For those wondering the MTU sizes on the client side by media type are as follows: And notice that the host size is different, as this takes in account of packet headers.

Making sure to overtype the 3780, to a 256, and ensuring the + sign hasn’t moved you can hit enter, cursor to the top and type in SAVE.

We can then edit the N13 file, changing line 35 to have MAXLU=3

Hopefully this clears up editing VTAM files.

As mentioned the easiest way to regen the system is to delete the old object files. So hit f3 a few times and get back to the dataset list

This time we want the VTAMOBJ set. Go and ‘V’iew it like last time and we will get the list of files:

Now we are going to put a ‘d’ next to N13 and S3705. This will flag them for deletion. Hit enter!

The files are now gone! On the next boot they will be rebuilt.

I just hit F3 a bunch of times and it’ll drop to some TSO shell

From here you can shutdown the system. It’ll take a few minutes, but you can start it up again just the same way you brought it up. Remember to attach your console.

Setting up SNA Server

Just like Dynamips, I setup a batch file, as the default one is just far too long to read:

@echo you need to figure out your nic name..
@echo something like
@echo \Device\NPF_{XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX}
set loopback=\Device\NPF_{3DF0EC5D-7FBE-46DF-ACF8-EF5D8679A473}
set vmnet1=\Device\NPF_{3BC364F4-5A15-405D-926C-C594383F0323}
qemu -m 64 -L pc-bios ^
-hda SBS15.vmdk ^
-soundhw sb16,adlib ^
-net nic,model=pcnet,macaddr=52:24:00:22:00:01 ^
-net pcap,devicename=%loopback% ^
%1 %2 %3 %4 %5 %6

This will setup a small machine with 64MB of ram, a single AMD PCNet adapter on the loopback interface. I installed Windows NT 3.51 from the Small Business Server 1.5 setup. I don’t know why VMware + NT 3.51 didn’t get along, maybe it’s my Erying, Or maybe it just plain doesn’t work, I’m not sure, and far too impatient to troubleshoot it.

It’s very important that you do add the DLC Protocol during setup. It’s in the ‘Add Software’ part. I kept my NT very simple with only NetBEUI and DLC protocols. At the moment I’m not that interested in actually networking the NT, and if I was, I would add a second NIC, just like what I did for Dynamips.

Setting up NT isn’t that interesting, but SNA server is. I did use the 2.11 on the Back Office CD, but for completeness sake of testing I tried the oldest one I could find, and 2.1 beta from June, Build 2.1.0.216.

I left the network name & control point name blank as I just want terminal, I’m not even going to think that LU6.2 applications on such an ancient version of MVS was even possible.

This is pretty much default, the Link service basically sets itself up as we only have the one NIC.

Take note of the remote network address. 400010200100 which came from above the address we directly point to the dlsw. Also it’s form the 9track blog.

Insert a 3270 LU for us to try to talk to Hercules.

I’m pretty sure it was hard coded to be a model 2.

I turned off the ability for the model to be overwitten.

Create a pool, I called it swimming, because of ‘reasons’. I made it a type 2 pool and added the terminal to it.

Next I added the EVERYONE user, and gave them access to the SWIMMING pool

Finally we are ready to save the config, and do the hand holding and start up. If the stars aligned you will see them go ACTIVE/ACTIVE and the terminal will go Available.

Sadly the terminal won’t go live, it’s stuck in SSCP.

And this is as far as I can go. I have to think that with either something far older protocol wise for the PC, such as IBM Personal Communications/3270 for Windows V2.0 (v4 didnt work either), or a far newer Mainframe software version would support whatever it is SNA server wants to give us the crazy dream of running SNA self contained.

Running Wireshark on the loopback network I see this message:

UNSUPPORTED FUNCTION

Sadly this is as far as I can take you. I do want to give a special thanks to Vinatron & blackbit for trying to troubleshoot this with me. Best we can figure is that TK4- is just too old.

Troubleshooting

From the cisco router try dlsw commands like this:

dlsw>sho dlsw circuits
Index           local addr(lsap)    remote addr(dsap)  state          uptime
2281701660      4a24.0044.0080(04)  0200.9099.8000(04) CONNECTED      00:02:23
Total number of circuits connected: 1

This does show the connection. Notice that ‘show bridge’ will show nothing in this config.

Be sure to check peers as well:

dlsw>show dlsw peers
Peers:                state     pkts_rx   pkts_tx  type  drops ckts TCP   uptime
 TCP 192.168.199.1   CONNECT         10        13  conf      0    1   0 00:05:07
Total number of connected peers: 1
Total number of connections:     1

Make sure your interfaces are ‘up/up’ and passing traffic

FastEthernet0/0 is up, line protocol is up
  Hardware is DEC21140, address is ca00.48f4.0000 (bia ca00.48f4.0000)
  Internet address is 192.168.199.10/24
  MTU 1500 bytes, BW 100000 Kbit, DLY 100 usec,
     reliability 255/255, txload 1/255, rxload 1/255
  Encapsulation ARPA, loopback not set
  Keepalive set (10 sec)
  Half-duplex, 100Mb/s, 100BaseTX/FX
  ARP type: ARPA, ARP Timeout 04:00:00
  Last input 00:00:00, output 00:00:00, output hang never
  Last clearing of "show interface" counters never
  Input queue: 0/75/0/0 (size/max/drops/flushes); Total output drops: 0
  Queueing strategy: fifo
  Output queue: 0/40 (size/max)
  5 minute input rate 1000 bits/sec, 2 packets/sec
  5 minute output rate 2000 bits/sec, 2 packets/sec
     12768 packets input, 1439279 bytes
     Received 3609 broadcasts (0 IP multicast)
     0 runts, 0 giants, 0 throttles
     0 input errors, 0 CRC, 0 frame, 0 overrun, 0 ignored
     0 watchdog
     0 input packets with dribble condition detected
     9999 packets output, 1037736 bytes, 0 underruns
     0 output errors, 0 collisions, 1 interface resets
     0 babbles, 0 late collision, 0 deferred
     0 lost carrier, 0 no carrier
     0 output buffer failures, 0 output buffers swapped out
dlsw>show int eth1/0
Ethernet1/0 is up, line protocol is up
  Hardware is AmdP2, address is ca00.48f4.001c (bia ca00.48f4.001c)
  MTU 1500 bytes, BW 10000 Kbit, DLY 1000 usec,
     reliability 255/255, txload 1/255, rxload 1/255
  Encapsulation ARPA, loopback not set
  Keepalive set (10 sec)
  ARP type: ARPA, ARP Timeout 04:00:00
  Last input 00:00:02, output 00:00:02, output hang never
  Last clearing of "show interface" counters never
  Input queue: 0/75/0/0 (size/max/drops/flushes); Total output drops: 0
  Queueing strategy: fifo
  Output queue: 0/40 (size/max)
  5 minute input rate 0 bits/sec, 0 packets/sec
  5 minute output rate 0 bits/sec, 0 packets/sec
     52426 packets input, 5148287 bytes, 0 no buffer
     Received 12336 broadcasts (0 IP multicast)
     0 runts, 0 giants, 0 throttles
     0 input errors, 0 CRC, 0 frame, 0 overrun, 0 ignored
     0 input packets with dribble condition detected
     36383 packets output, 2465490 bytes, 0 underruns
     0 output errors, 0 collisions, 3 interface resets
     0 babbles, 0 late collision, 0 deferred
     0 lost carrier, 0 no carrier
     0 output buffer failures, 0 output buffers swapped out
dlsw>

And of course check WireShark to see if there is any handshake:

And of course check the Hercules logs to make sure your VTAM rebuilt, look for ERROR or anything related to S3705 or N13.

Torbjörn Granlund’s Excellent resource on running free OS’s on Qemu

Ever get tired of x86 on x86?  yeah me too.

How to solve that problem?

Simple, grab QEMU, and jump off into all those cool RISC processors of the 1990’s that were going to save us all from the WINTEL hegemony!

Lots of instructions, samples, images, and hints here:

https://gmplib.org/~tege/qemu.html

It’s really more comprehensive than I’ve sat down to do, so yeah it’s awesome!

Supported platforms include:

mips32,mips64,sparc32,sparc64,ppc32,ppc64,arm32,arm64,s390x,alpha

Mainframe (s390 Linux) Moon Buggy

Linux/s390

Linux/s390

For all you mainframe/Qemu fan’s I came across the ‘QEMU Advent Calendar‘, which includes Moon Buggy on s390!

Moon-buggy is an ascii art game styled after moon-patrol.

Since I do get people always requesting something to run on the Qemu s390 emulation, here you go!  And for Windows users, I packed it up somewhat to make it somewhat easy to run with the image files, emulator and ansicon as moon.7z .

Just unpack and run “run32.cmd” for the 32bit ansicon, or “run64.cmd” for the 64bit ansicon.

Emulating a Cray X-MP Supercomputer

I just saw this, and it looks incredibly awesome.  I didn’t know that early Cray’s were more in line with mainframes.  And the X-MP could reach speeds of 105Mhz with 16MB of ram back in 1982.

Talk about awesome!  Andras did an awesome job of recovering this lost gem of early supercomputing.

VM – CP/CMS – VM/SP is 40 years old…

Wow mainframe stuff is ‘getting up there’.. VM was released August 2nd 1972.

There is no doubt about the importance of this OS, as it brought virtualization and paravirtualization to the world 40 years ago.  And a lot of these concepts found their way to “minor” things like the 80386, OS/2, and even Windows/386 .

Ages ago I managed to get a copy of Dungeon/Zork running on CMS, but other than that I don’t have any other exciting mainframe software…

 

 

Linux on Qemu’s s390x-softmmu

It’s getting there….!

With a bit of poking around in the latest Qemu 0.15.0 rc2 beta, the S390x now builds by default.  Finding something for it to run was a bit of a stretch but I should have figured that Debian would have something.

It does take a few seconds to boot up, and by default you’ll just be sitting at a blank screen until you toggle to the virtcon0 screen.

But it’s VERY snappy… I haven’t gotten it to install (unsupported NIC?!) but I’m pretty positive it’s 100% my fault.  I’m just happy I saw it boot.  And it runs the busybox stuff just fine so it’s tentatively working.

If anyone wants to give it a whirl, download my exe, and the kernel/init.rd I’ve found that at least boot up here.

I’m hoping this will spur someone to spell out how/what to install onto it, and maybe if things like MUSIC/SP and CMS will run on it… That’d be fantastic!

In the meantime I’d imagine this combined with KVM on people with accelerated configs will enjoy some SERIOUS competition to the IBM Mainframe monopoly!

 

Zork on the IBM Mainframe (VM/370 CMS) it lives!

There we have it, after a LOT of fighting the emulators, missing bits, LOTS of help the hercules-os380 mailing list, and the EXCEPTIONAL of one Paul Edwards, and it’s running.

It seems to be Dungeon version 1.2C

read news
US NEWS & DUNGEON REPORT
01-MAR-81 Late Dungeon Edition
This is a version of Zork on VM/370

The problems with it are:
-Lack of an endgame.
-Simple parser (no compound sentences).
-Numerous bugs and spelling errors.
But so what.

If you encounter problems or find logic, spelling, or usage bugs,
keep them to yourself.

>

It’s a little odd playing zork on a mainframe…