Installing NetManage Chameleon on Windows 3.0!

After seeing the spotlight on twitter from WinWorld, on NetManage Chameleon, an old TCP/IP stack that supported Windows 3.0! With more details over on the forum. I was inspired to set it up myself.

I did go a bit overboard showing how to install MS-DOS & Windows 3.0 on Qemu. Maybe it’ll help someone who wants to try to use Qemu, but is too scared? Maybe I moved too quickly.

One thing I did do differently in this run, is launching the monitor and a serial port as tcp servers so I could telnet into the VM, effectively having a way to share text like a clipboard back and forth. I’m kind of surprised I hadn’t really started using Qemu in this manner much earlier.

qemu.exe -L pc-bios ^
-m 16 ^
-hda apricot.vmdk ^
-net nic,model=pcnet -net user ^
-monitor telnet:127.0.0.1:4000,server,nowait ^
-serial telnet:127.0.0.1:4001,server,nowait ^
-fda yourdisk_here.vfd

Surprisingly it went surprisingly well, other than my goof of having the OS/2 driver instead of the MS-DOS driver for the nic.

Sadly, the tn3270 program bundled with Chameleon doesn’t work properly with Hercules.

As always I’ve uploaded it to archive.org: apricot-dos4-win3-chameleon3.7z

Citrix 2 on Qemu!

Something weird happened when I was stress testing a build platform, I scripted out a build of all the old Qemu I could with GCC 3.4.5, and I had pointed them to a random disk. Turns out it was a Citrix Multiuser 2 disk. And something weird happened, a few of them actually booted!

I setup a simple script to have it listen on both serial ports, one for the ICA Citrix client, the other accepting a more generic serial terminal.

qemu -L pc-bios -m 64 -M isapc ^
-fda dummy.vfd ^
-hda citrix2-1b.vmdk ^
-serial telnet:127.0.0.1:5523,server,nowait ^
-serial telnet:127.0.0.1:5524,server,nowait ^
-net nic,model=ne2k_isa ^
-net user

Just very simple stuff.

I can then just boot a simple PC qemu and attach it to the other side of the serial port

qemu.exe -L pc-bios -m 8 ^
-serial telnet:127.0.0.1:5523 ^
-fda "i:\Citrix Multiuser Link 1.0 (3.5-720k)\Images\disk01.img" ^
-hda msdos5.vmdk

Sadly it’s only text mode, and at 9600 baud, which you can really feel. Sadly OS/2 PC Serial port drivers sucked.

this kind of setup for me was a bit easier to mess around with linkers as I have multiple screens to view stuff, along with a terrible modem option to transfer files. Only the console can run graphical programs, so this isn’t the one to build a Windows 3.0 farm on

If anyone was crazy enough to try this, I’d suggest the 1.0 manuals. Sorry I didn’t get a chance to scan the 2.0 stuff.

The serial ports lock & jam a lot so I made some scripts to try to deal with it, just rserial1/2 to reset the port, and logouts1/2 to logout the serial connection. Yes it’s that fragile. Being a pre-release version of OS/2 I had zero luck getting any lan client going. If I had it’d make dealing with this thing, even with NetBEUI a lot more tollerable.

I did load up Windows 3.0 by the directions so it does work, albeit standard mode only. Looking back at OS/2 6.123, while it has the OS/2 1.2 interface, it’s MS-DOS was restricted to real mode only. So this was also a nice step up.

One thing to point out is that it’ll hang at the logo screen for literally a minute. I’m not anywhere near as smart enough to debug the loop and ‘fix’ it. Sometimes it just won’t make it, so close it down, and try again. It may seem hopeless sometimes but it does work. Although this unpredictability is why there is no public Citrix 2.0 on demand. I haven’t bothered tryng to build Qemu 0.8.2 on Linux, but if it were more reliable booting and networking, combining it with xinetd having a LAN backing store of homes & apps would make for a neat Citrix on Deman farm thing.

I can’t imagine anyone wanting to play but I did upload it to archive.org.

Microsoft’s Netware emulators

First thing to take care of, is if you have the old pcap on Windows running around. If you have it, you’ll know as you’ll get spammed with “FATAL Bad Memory Block.”, although things will continue to operate just fine.

Win10Pcap!
C:\dynamips\netware\qemu-0.90-pcap-client>qemu -m 16 -L pc-bios -M isapc -hda client.disk -soundhw sb16,adlib -net nic,macaddr=52:24:00:22:00:01 -net pcap,devicename={BFA868ED-E508-4436-B085-EC815C4C544C}
Eth: opened {BFA868ED-E508-4436-B085-EC815C4C544C}
Could not open '\\.\kqemu' - QEMU acceleration layer not activated
FATAL Bad Memory Block.
FATAL Bad Memory Block.
FATAL Bad Memory Block.
FATAL Bad Memory Block.

So be sure to dump that for the one over on npcap!

The old times, actually running Netware 3.12

There was a time when Windows NT didn’t dominate the 1990’s data centre. Instead as a carryover from the 1980’s the majority of corporate LANS were instead based on Netware. And the only way Windows NT was going to make space in this environment was to dress up in sheep’s clothes and mingle among them unnoticed. That brings us to this GEM:

Services for NetWare

This fun CD will let our NT 4.0 server emulate a NetWare server! The first thing in one of these stealth migrations was to just join the existing network.

The existing network is 0C0FFCAB

In order to do this, the two bits of information we need is the frame type, since NetWare supports so many, and the network address. In this case its 0C0FFCAB.

default IPX is no good

By default the NT server will just listen to the network, and participate on what it sees. This is fine if you are just playing along as a dynamic node, but being a NetWare node requires you to step it up, and have these values set, as it is very possible that you could be the first one (or only one) live on the network, and you don’t want clients trying to think on their own.

I also gave mine an internal network number of 1381, because you know, it’s NT 4.0.

To add the FPNW, you need to add it as a new service. Just tell it you have a disk

You’ll then have to point it to the path of the install. This is honestly the hardest part.

Selecting the first option will install the NetWare Server emulation on the NT server.

I went ahead and named my NetWare emulation as SHEEP, as I NT to blend into the existing NetWare network, with nobody being the wiser.

indeed, on our client that was already connected to the Qemu server before I built WOLF, I ran an slist command to show all the servers on the network, and there is my Wolf in Sheep’s clothes.

Creating NetWare compatible volumes is done in the Server Manager, under the FPNW option. It’s pretty self explanatory, nothing too exciting there.

The truth is during the period where this was important the NT 3.51-40 timeframe, NetWare was still a dominant force. But once Windows 95 had launched, and the explosion of people wanting MORE, the natural interest of people going to NT was just amazing to see in corporate space. While there was an early beta of the newshell for NT 3.51, when NT 4.0 shipped it was just amazing as all the reservations for running NT had just evaporated. We’d gone from hiding among the sheep to full on eating them all. It was staggering how fast we were backing up NetWare volumes to only re-format the servers to NT, and get people converted to using them. Before NT 4, the consensus was that rolling out the client config was going to be a nightmare, and that being able to emulate NetWare was the way to go, as it would just work (see the MS-DOS VM talking to NT with an unmodified NetWare client). Instead we saw a massive drive to Windows 95, which ended up changing the client landscape and upending NetWare completly.

About the most difficult thing was user mappings, there was tools to do this kind of thing, and I believe we had something to even proxy passwords, but it was easier to make people just login to the NT side.

Of course this is ONE of the emulators, you might be asking, okay, what is the other?

Why, it’s WINDOWS 95.

YES.

I’m joining the NT domain for the full experence, but the NetWare emulation relies on NetWare servers for authentication. You could use an actual NetWare server, or of course a FPNW server.

Adding file and printer sharing for NetWare workgroups under Windows 95 is done by adding a Service to the network stack. It’s even on the floppy version.

To maximize the functionality and the pain, be sure to turn on SAP Advertising. This way it’ll appear in server lists.

SAP on!

So with all of this in place, yes you can map drives from the MS-DOS client to the Windows 95 workstation acting as a server.

Mapping a drive on 95, authenticated by the WOLF hiding as a SHEEP

And there we go, I can now see the Windows 95 workstation on the SLIST, and connect and map drives. My user account of course exists on the NT side.

While professionally I didn’t rely too much on this feature, but it was nice in that era where you still had MS-DOS/MacOS/OS2 desktops with NetWare clients to quickly share stuff. But in a large organisation this would lead to major issues.

The fundamental flaw in NetWare is that there is no directory service. Instead, all the servers have to broadcast that they exist, along with what services they provide.

On my tiny demo network this isn’t that much traffic. But on a larger network that spans continents this becomes a problem. With thousands of servers there can be an incredible amount of this SAP announcement traffic. Since there is no directory service, the other problem is that when a new client is booted up, it’ll do what is known as a GNS or Get Nearest Server request in order to find the closest server to attach to, in order to facilitate a login. And EVERY server will reply.

And as you can see some servers even will reply more than once. And this can have other effects where people reboot servers during the day, something that is very natural for a Windows 95 user, which could create issues for other users, even forcing them to reboot! And yes, anecdotally I ran into this so many times where people with laptops with this feature turned on, and they would screw up the local office building (impacting hundreds of people). Even when they weren’t winning the GNS elections.they are still generating extra traffic, and occasionally they will win. This was another problem we had with all these wolves hiding in sheep’s clothing.

In the end, NetWare was utterly removed from the data center’s by the end of 1997. Windows NT just scaled too well for SMP and large disks (I had one server with 1TB! It was using 4GB disks it was massive!), along with being able to easily install stuff like SQL Server & SNA Server, unlike NetWare where any NLM conflict will bring the entire thing down. Not having a name lookup server was a giant pain, but the final nail was also in 1997 with the rise of the internet, and normal people now getting involved the entire LAN/WAN was going TCP/IP, where it had only been a fringe protocol used for managing cisco routers, and tftp/ftp some files around, Windows NT’s ability to encapsulate named pipes, and NETBIOS over TCP/IP let them embrace this new world where the TCP/IP stack on NetWare 3.12/4.11 was only good for sending SNMP alerts.

But don’t cry for NetWare, they made so much money they were able to coast for decades before being bought out in 2010 by a Mainframe Terminal Emulation company of all things, The Attachmate Group, who was later in turn bought out by Micro Focus, a COBOL language company. I guess in the end, the Mainframes won?

Everyone seems to be losing their minds over the Windows XP Professional Key

algorithm being cracked.

But of course, how does that help me?

Unironically, I had purchased this for a whopping £4.68

No, really here’s the receipt. What a bargain!

Of course this is a legit copy with a legit key. But the online activation servers are all gone, and it looks like I’d have to call someone asking about my 22 year old copy of Windows, that I’ll load up and quickly forget.

Since I’m going to use QEMU, 0.90 with pcap support I thought I’d share the startup options:

set loopback=\Device\NPF_{3DF0EC5D-7FBE-46DF-ACF8-EF5D8679A473}
set vmnet1=\Device\NPF_{3BC364F4-5A15-405D-926C-C594383F0323}
qemu -m 512 -L pc-bios ^
-hda xphome.vmdk ^
-soundhw es1370 ^
-net nic,model=pcnet,macaddr=52:24:00:33:00:01 ^
-net pcap,devicename=%loopback% ^
%1 %2 %3 %4 %5 %6

I had high hopes for this thing. Clearly misplaced ambitions.

First up, it’s an upgrade version. So that means instead of installing XP I had to waste my time installing NT Workstation 3.51, then installing XP. Yuck. And of course it just want small FAT disks of the 2/4 gigabyte boundary type as it’s 1994. Not the bright future of 2002’s Windows XP.

I don’t know why Qemu 0.90 has issues with XP detecting the CD-ROM drive, but yeah that sucked. I wanted to load up some more insane SNA experiments, but there is no DLC / 802.2 driver for XP Home. wow.

At least once it’s satisfied, we can format the disk as one big happy partition, and we can get on with our lives.

Installation is rather uneventful, however we are instantly reminded that we have only 30 days to go. Since we have that nasty CD-ROM issue that means shutting down, and booting back up, but with this fun program on an ISO image, xp_activate.

I did try to make a call, to activate my Windows, but the connection was terrible and I’m not even sure if these numbers were right. No I mean I know they didn’t work.

So I did what all legit users end up doing, using the crack for my 21 year old copy of Windows.

And just a few clicks later, it was done.

Windows XP Home is activated.

I don’t know if it’s even really going to last, I didn’t try anything else, actually I already deleted it. And the XP folio is back on the bookshelf.

Not only is there no DLC, did you know you can’t uninstall TCP/IP? At least you can unbind it from your NIC. While it does have IPX/SPX there is no built in Netware client. When they said HOME they meant it!

Ghosts in the mainframe!

There is a LOT going on in this image, and I’ll try to explain it, but yeah “it’s complicated”.

SNA networking & Hercules has always been a goal for a lot of people, including me as we always wanted to setup some SNA server of some kind. Especially on RISC platforms, as there is only so much fun on SQL server.

Okay I know the practical among you will say, doesn’t it support telnet 3270? Isn’t that good enough? Yes for day to day mundane stuff, absolutely. But I’m not all that interested in that, I wan’t to have the whole ancient network, and I wan’t it self contained and on my desk! Or on a laptop, as I see fit.

What started this whole adventure was a simple image from 9track.net, showing that being able to connect physical devices to Hercules was indeed possible!

Image from https://www.9track.net/hercules/dlsw/

This is a physical IBM 3178 & 3179 terminals talking to TK4- , a MVS3.8j pre-configured system!

The magic that makes this all possible, is a cisco router, running enterprise IOS, with dlsw support.

My setup is going to be inspired by this setup, but not exactly 100% But this is what I’m going to use on Windows 10

  • Dynamips for the cisco router, running JS-M 12.2(25)S8
  • Qemu 0.90 with PCAP running Windows NT 3.51 Server along with SNA Server 2.1
  • Qemu 0.90 running Windows 3.1 and XVision
  • VMware Player
  • WireShark
  • Microsoft Loopback adapter
  • WSLv1

I had originally wanted to run the NT server on VMware but for some reason it just hangs trying to initialise the NT kernel. I didn’t bother trying to troubleshoot it, I just jumped to Qemu. Even service pack 5 didn’t help. VMware left me with the virtual network that will NAT if needed, and of course let me telnet to the Dynamips program. The SNA traffic is isolated to the MS Loopback adapter, which will let pcap programs talk to each other.

The first thing I did was run ‘hdwwiz’ on Windows 10, and added in the KM-TEST loopback adapter

We know what we want, so go to the manuall selection

Network adapters

And select the KM-TEST Loopback Adapter

Next I changed the protocols available on the loopback, as I don’t want my Windows 10 host interfering with the SNA network at all.

So the next thing to do is to get your network GUID’s. ethlist.exe from the Dynamips download will get you that:

C:\dynamips>ethlist.exe
Network devices:
  Number       NAME                                     (Description)
  0  \Device\NPF_{3DF0EC5D-7FBE-46DF-ACF8-EF5D8679A473} (loopback)
  1  \Device\NPF_{D9FBD118-B9DF-4C3C-BD9E-07A0E34D8F75} (Local Area Connection* 8)
  2  \Device\NPF_{F5057901-6A30-413A-80E4-4765DA794B7C} (Local Area Connection* 7)
  3  \Device\NPF_{E3D3EC8D-29C3-4B70-B01C-600D3F9ED1D6} (Local Area Connection* 6)
  4  \Device\NPF_{82EEDBC1-899D-416F-BD51-3DBE2287257F} (VMware Network Adapter VMnet8)
  5  \Device\NPF_{3BC364F4-5A15-405D-926C-C594383F0323} (VMware Network Adapter VMnet1)
  6  \Device\NPF_{DDF1FA94-7488-414F-A41A-EC88C1FB0DE4} (Ethernet)
  7  \Device\NPF_{E7CA8F40-4639-410D-B5CA-F402FE69AF5D} (Ethernet 2)

I want the cisco router to have two interfaces, one with TCP/IP for me to be able to telnet into it (maybe other management as well?!) and the other one for the SNA traffic.

Setting up Dynamips

As mentioned above I’m going to use the VMnet1 for TCP/IP to the router, and the loopback adapter for SNA traffic. To try to make things a little easier to read I setup a small batch file that let’s me plug in variables to Dynamips:

set loopback=\Device\NPF_{3DF0EC5D-7FBE-46DF-ACF8-EF5D8679A473}
set vmnet1=\Device\NPF_{3BC364F4-5A15-405D-926C-C594383F0323}
set IOS=c7200-js-mz.122-25.S8.bin
set NPE=npe-200
..\dynamips.exe -P 7200 %IOS%  ^
-t %NPE%  ^
-p 0:C7200-IO-FE ^
-s0:0:gen_eth:%vmnet1% ^
-p 1:PA-4E  ^
-s1:0:gen_eth:%loopback% ^
-p2:PA-4T+

The caret symbol will break up lines on NT, much like the ampersand will on Unix. And this let’s me use clear variables for the networks, IOS & NPE type so it’s nowhere near as complicated to edit.

This will create a cisco 7200 with an NPE-200, with the following cards:

The next thing is what ip address is bound to VMnet1? This is mine:

Ethernet adapter VMware Network Adapter VMnet1:

   Connection-specific DNS Suffix  . :
   Link-local IPv6 Address . . . . . : fe80::c3d2:c891:b7e0:6797%5
   IPv4 Address. . . . . . . . . . . : 192.168.199.1
   Subnet Mask . . . . . . . . . . . : 255.255.255.0
   Default Gateway . . . . . . . . . :

So all my TCP/IP in this example will be using 192.168.199.0/24

As mentioned on the 9track page, all the magic happens on the cisco router. I’ve made a few changes as I may want to try the SDLC in the future to perhaps some other experiment if I can find an emulator that’ll drive it over serial, but for now let’s just get to the config:

!
version 12.2
service timestamps debug uptime
service timestamps log uptime
no service password-encryption
!
hostname dlsw
!
boot-start-marker
boot-end-marker
!
enable password cisco
!
ip subnet-zero
!
!
no ip domain-lookup
!
ip cef
no mpls traffic-eng auto-bw timers frequency 0
call rsvp-sync
!
!
!
!
!
!
!
source-bridge ring-group 1
dlsw local-peer peer-id 192.168.199.10
dlsw remote-peer 0 tcp 192.168.199.1
dlsw mac-addr 4000.1020.0100 remote-peer ip-address 192.168.199.1
dlsw udp-disable
dlsw transparent switch-support
!
interface FastEthernet0/0
 ip address 192.168.199.10 255.255.255.0
 duplex half
 no clns route-cache
!
interface Ethernet1/0
 no ip address
 duplex half
 no clns route-cache
 dlsw transparent redundancy-enable 5555.5555.5000
 dlsw transparent map local-mac 4000.1020.0100  remote-mac 4000.0999.0100
!
interface Ethernet1/1
 no ip address
 shutdown
 duplex half
 no clns route-cache
!
interface Ethernet1/2
 no ip address
 shutdown
 duplex half
 no clns route-cache
!
interface Ethernet1/3
 no ip address
 shutdown
 duplex half
 no clns route-cache
!
interface Serial2/0
 no ip address
 encapsulation sdlc
 no keepalive
 serial restart-delay 0
 clockrate 64000
 no clns route-cache
 sdlc role primary
 sdlc vmac 4000.0999.0100
 sdlc address C1
 sdlc xid C1 01700019
 sdlc partner 4000.1020.1000 C1
 sdlc dlsw C1
!
interface Serial2/1
 no ip address
 shutdown
 serial restart-delay 0
 no clns route-cache
!
interface Serial2/2
 no ip address
 shutdown
 serial restart-delay 0
 no clns route-cache
!
interface Serial2/3
 no ip address
 shutdown
 serial restart-delay 0
 no clns route-cache
!
ip classless
!
no ip http server
!
!
!
!
!
!
control-plane
!
!
dial-peer cor custom
!
!
!
!
gatekeeper
 shutdown
!
!
line con 0
 session-timeout 35791
 stopbits 1
line aux 0
 stopbits 1
line vty 0 4
 password cisco
 login
!
!
end

This sets up the router so I can telnet to it from my desktop at 192.168.199.10, and allows it to talk to the base Windows machine on 192.168.199.1

All the magical MAC addresses come from 9track.net, as he wrote the dlsw hooks, so I just copied that. There is probably a great deal that could be cleaned up, but once I saw the two talking I kind of froze what I was doing.

With that much in place I then jumped to WSL,and built the emulator from github. I cloned it, and renamed that to herc-dlsw. At least for me this was pretty straightforward. The Hercules fork will build with Visual Studio as well, but I knew I was going to need some kind of tn3270 emulator, and I wanted to use x3270, and I had just recently bought this discounted copy of XVision, so of course I wanted to use that.

Despite this catastrophic defect that wasn’t disclosed in the auction.

I downloaded and extracted the TK4- latest distro on WSL. I just created a ‘herc’ directory in my home to house the tk4- release. The next thing to do is overlay your dlsw enabled exe’s and libraries.

cd ~/herc-dlsw/.libs
mkdir x
cp * x
cd x
rm *.o *.lai
cp *.so $HOME/herc/hercules/linux/64/lib/hercules
cp *.la $HOME/herc/hercules/linux/64/lib/hercules
rm *.so *.la
cp * $HOME/herc/hercules/linux/64

Now with the binaries in place, I do need to setup the Xvision VM so I can receive the X11. Of course there is so many other ways to do this, but this is mine:

qemu.exe -L pc-bios -m 64 -hda xvision.vmdk -net nic,model=ne2k_isa -net user -redir tcp:6000::6000

The important thing is that tcp port 6000 is redirected inwards, and that I’m using the NE2000 card, which on my weird fork will print out the hardware config, so I know how to find the nic.

added SLIRP
adding a [GenuineIntelC♣] family 5 model 4 stepping 3 CPU
added 64 megabytes of RAM
trying to load video rom pc-bios/vgabios-cirrus.bin
added parallel port 0x378 7
added NE2000(isa) 0x320 10
pci_piix3_ide_init PIIX3 IDE
ide_init2 [0] s->cylinders 203 s->heads 16 s->sectors 63
ide_init2 [1] s->cylinders 0 s->heads 0 s->sectors 0
ide_init2 [0] s->cylinders 2 s->heads 16 s->sectors 63
ide_init2 [1] s->cylinders 0 s->heads 0 s->sectors 0
added PS/2 keyboard
ps2.c added PS/2 mouse handler
added Floppy Controller 0x3f0 irq 6 dma 2
installing PS/2 mouse in CMOS
  Bus  0, device   0, function 0:
    Host bridge: PCI device 8086:1237
  Bus  0, device   1, function 0:
    ISA bridge: PCI device 8086:7000
  Bus  0, device   1, function 1:
    IDE controller: PCI device 8086:7010
      BAR4: I/O at 0xffffffff [0x000e].
  Bus  0, device   1, function 3:
    Class 0680: PCI device 8086:7113
      IRQ 0.
  Bus  0, device   2, function 0:
    VGA controller: PCI device 1013:00b8
      BAR0: 32 bit memory at 0xffffffff [0x01fffffe].
      BAR1: 32 bit memory at 0xffffffff [0x00000ffe].

And in this case it’s 0x320 IRQ 10. XVision being it’s own level of disappointment, I’ll have to cover it further, and later but suffice to say it at least catches the x3270 so I can get onto the console.

Setting up Hercules

Editing conf/tk4-_default.cnf is pretty easy as it’s on Linux and you can use VI.

# NCP VTAM
#
0660 3705 lport=${N660PORT:=37051} locncpnm=N07 rmtncpnm=N08 …
          unitsz=252 ackspeed=1000
0661 3705 lport=${N661PORT:=37052} locncpnm=N10 rmtncpnm=N11 …
          idblk=017 idnum=00018 locsuba=10 rmtsuba=11 unitsz=252 …
          ackspeed=1000
0662 3705 lport=${N662PORT:=37053} debug=yes dlsw=yes locncpnm=N12 …
          rmtncpnm=N13 idblk=017 idnum=00019 locsuba=12 rmtsuba=13 …
          unitsz=252 ackspeed=1000
0663 3705 lport=${N663PORT:=37054} locncpnm=N14 rmtncpnm=N15 idblk=017 …
          idnum=0001a locsuba=14 rmtsuba=15 unitsz=252 ackspeed=1000

And it’s simple, just assign the dlsw to the 0662 3705 controller.

The real fun is in the VTAM configuration. Which had been stumping me for well over a year. But then I found this Bradrico Rigg article aptly titled : Run your own mainframe using Hercules mainframe emulator and MVS 3.8j tk4, and it gave me the confidence to get this DONE. Thanks Bradrico!

First get MVS up and running. You have to run the ‘console_mode’ script to see what is going on.

cd herc/unattended
./set_console_mode
cd ..
./mvs

It’s not all that difficult XVision is using SLiRP, so it’s listening on all my IP addresses so I just do a simple

export DISPLAY=192.168.1.72:0
nohup x3270 &

And the emulator will pop up in Qemu. Just connect to localhost:3270 and you’ll be greeted by the login pannel:

Credentials are HERC01 / CUL8TR

I would HIGHLY recommend following the tutorial to get used to submitting a simple COBOL program. It walks through the key concepts of locating a file, and viewing it on MVS. Something that up until yesterday was out of my league.

We need to edit the file S3705 on SYS1.VTAMLST

Basically it’s 1,3,4 from the main pannel:

or RFE, Utilities, DSLIST

Type in the Volume name, then tab over to the left of the volume and put in V to view

Now we will get a list of all the files. We want to edit S3705, so you can tab/arrow down, but sure to put an `E’ next to it, then hit enter so we can edit the file

F7/F8 will page down/page up as needed. As mentioned we are interested in Subarea 13, PU type 2.

The line we are changing is the MAXDATA or MTU size for this unit. Since we are doing dlsw, or an emulated serial link, we need to knock it down to 256. Notice all the plus signs on the right hand? THOSE ARE IMPORTANT! Not only do they need to exist, but they also have to be on the far right.

For those wondering the MTU sizes on the client side by media type are as follows: And notice that the host size is different, as this takes in account of packet headers.

Making sure to overtype the 3780, to a 256, and ensuring the + sign hasn’t moved you can hit enter, cursor to the top and type in SAVE.

We can then edit the N13 file, changing line 35 to have MAXLU=3

Hopefully this clears up editing VTAM files.

As mentioned the easiest way to regen the system is to delete the old object files. So hit f3 a few times and get back to the dataset list

This time we want the VTAMOBJ set. Go and ‘V’iew it like last time and we will get the list of files:

Now we are going to put a ‘d’ next to N13 and S3705. This will flag them for deletion. Hit enter!

The files are now gone! On the next boot they will be rebuilt.

I just hit F3 a bunch of times and it’ll drop to some TSO shell

From here you can shutdown the system. It’ll take a few minutes, but you can start it up again just the same way you brought it up. Remember to attach your console.

Setting up SNA Server

Just like Dynamips, I setup a batch file, as the default one is just far too long to read:

@echo you need to figure out your nic name..
@echo something like
@echo \Device\NPF_{XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX}
set loopback=\Device\NPF_{3DF0EC5D-7FBE-46DF-ACF8-EF5D8679A473}
set vmnet1=\Device\NPF_{3BC364F4-5A15-405D-926C-C594383F0323}
qemu -m 64 -L pc-bios ^
-hda SBS15.vmdk ^
-soundhw sb16,adlib ^
-net nic,model=pcnet,macaddr=52:24:00:22:00:01 ^
-net pcap,devicename=%loopback% ^
%1 %2 %3 %4 %5 %6

This will setup a small machine with 64MB of ram, a single AMD PCNet adapter on the loopback interface. I installed Windows NT 3.51 from the Small Business Server 1.5 setup. I don’t know why VMware + NT 3.51 didn’t get along, maybe it’s my Erying, Or maybe it just plain doesn’t work, I’m not sure, and far too impatient to troubleshoot it.

It’s very important that you do add the DLC Protocol during setup. It’s in the ‘Add Software’ part. I kept my NT very simple with only NetBEUI and DLC protocols. At the moment I’m not that interested in actually networking the NT, and if I was, I would add a second NIC, just like what I did for Dynamips.

Setting up NT isn’t that interesting, but SNA server is. I did use the 2.11 on the Back Office CD, but for completeness sake of testing I tried the oldest one I could find, and 2.1 beta from June, Build 2.1.0.216.

I left the network name & control point name blank as I just want terminal, I’m not even going to think that LU6.2 applications on such an ancient version of MVS was even possible.

This is pretty much default, the Link service basically sets itself up as we only have the one NIC.

Take note of the remote network address. 400010200100 which came from above the address we directly point to the dlsw. Also it’s form the 9track blog.

Insert a 3270 LU for us to try to talk to Hercules.

I’m pretty sure it was hard coded to be a model 2.

I turned off the ability for the model to be overwitten.

Create a pool, I called it swimming, because of ‘reasons’. I made it a type 2 pool and added the terminal to it.

Next I added the EVERYONE user, and gave them access to the SWIMMING pool

Finally we are ready to save the config, and do the hand holding and start up. If the stars aligned you will see them go ACTIVE/ACTIVE and the terminal will go Available.

Sadly the terminal won’t go live, it’s stuck in SSCP.

And this is as far as I can go. I have to think that with either something far older protocol wise for the PC, such as IBM Personal Communications/3270 for Windows V2.0 (v4 didnt work either), or a far newer Mainframe software version would support whatever it is SNA server wants to give us the crazy dream of running SNA self contained.

Running Wireshark on the loopback network I see this message:

UNSUPPORTED FUNCTION

Sadly this is as far as I can take you. I do want to give a special thanks to Vinatron & blackbit for trying to troubleshoot this with me. Best we can figure is that TK4- is just too old.

Troubleshooting

From the cisco router try dlsw commands like this:

dlsw>sho dlsw circuits
Index           local addr(lsap)    remote addr(dsap)  state          uptime
2281701660      4a24.0044.0080(04)  0200.9099.8000(04) CONNECTED      00:02:23
Total number of circuits connected: 1

This does show the connection. Notice that ‘show bridge’ will show nothing in this config.

Be sure to check peers as well:

dlsw>show dlsw peers
Peers:                state     pkts_rx   pkts_tx  type  drops ckts TCP   uptime
 TCP 192.168.199.1   CONNECT         10        13  conf      0    1   0 00:05:07
Total number of connected peers: 1
Total number of connections:     1

Make sure your interfaces are ‘up/up’ and passing traffic

FastEthernet0/0 is up, line protocol is up
  Hardware is DEC21140, address is ca00.48f4.0000 (bia ca00.48f4.0000)
  Internet address is 192.168.199.10/24
  MTU 1500 bytes, BW 100000 Kbit, DLY 100 usec,
     reliability 255/255, txload 1/255, rxload 1/255
  Encapsulation ARPA, loopback not set
  Keepalive set (10 sec)
  Half-duplex, 100Mb/s, 100BaseTX/FX
  ARP type: ARPA, ARP Timeout 04:00:00
  Last input 00:00:00, output 00:00:00, output hang never
  Last clearing of "show interface" counters never
  Input queue: 0/75/0/0 (size/max/drops/flushes); Total output drops: 0
  Queueing strategy: fifo
  Output queue: 0/40 (size/max)
  5 minute input rate 1000 bits/sec, 2 packets/sec
  5 minute output rate 2000 bits/sec, 2 packets/sec
     12768 packets input, 1439279 bytes
     Received 3609 broadcasts (0 IP multicast)
     0 runts, 0 giants, 0 throttles
     0 input errors, 0 CRC, 0 frame, 0 overrun, 0 ignored
     0 watchdog
     0 input packets with dribble condition detected
     9999 packets output, 1037736 bytes, 0 underruns
     0 output errors, 0 collisions, 1 interface resets
     0 babbles, 0 late collision, 0 deferred
     0 lost carrier, 0 no carrier
     0 output buffer failures, 0 output buffers swapped out
dlsw>show int eth1/0
Ethernet1/0 is up, line protocol is up
  Hardware is AmdP2, address is ca00.48f4.001c (bia ca00.48f4.001c)
  MTU 1500 bytes, BW 10000 Kbit, DLY 1000 usec,
     reliability 255/255, txload 1/255, rxload 1/255
  Encapsulation ARPA, loopback not set
  Keepalive set (10 sec)
  ARP type: ARPA, ARP Timeout 04:00:00
  Last input 00:00:02, output 00:00:02, output hang never
  Last clearing of "show interface" counters never
  Input queue: 0/75/0/0 (size/max/drops/flushes); Total output drops: 0
  Queueing strategy: fifo
  Output queue: 0/40 (size/max)
  5 minute input rate 0 bits/sec, 0 packets/sec
  5 minute output rate 0 bits/sec, 0 packets/sec
     52426 packets input, 5148287 bytes, 0 no buffer
     Received 12336 broadcasts (0 IP multicast)
     0 runts, 0 giants, 0 throttles
     0 input errors, 0 CRC, 0 frame, 0 overrun, 0 ignored
     0 input packets with dribble condition detected
     36383 packets output, 2465490 bytes, 0 underruns
     0 output errors, 0 collisions, 3 interface resets
     0 babbles, 0 late collision, 0 deferred
     0 lost carrier, 0 no carrier
     0 output buffer failures, 0 output buffers swapped out
dlsw>

And of course check WireShark to see if there is any handshake:

And of course check the Hercules logs to make sure your VTAM rebuilt, look for ERROR or anything related to S3705 or N13.

Word & Excel for MIPS

Years ago when I’d bought Office 4.2 for Windows NT, it only included i386 & Alpha builds of Word and Excel in the box, and a coupon for MIPS and PowerPC.

About the only thing interesting is that it actually ran under Win32s.

But today looking at term24‘s uploads on archive.org, I saw two CD-ROM images:

I quickly fired up Qemu MIPS NT, and confirmed that both do in fact contain a MIPS version! Excel does have the PowerPC version as well.

As far as I know the only RISC platform to get apps from Office 97 was the Dec Alpha, but at least MIPS users can rejoice now, knowing that they too have been blessed with 32bit Office 4.2 apps!

One of the amazing things about NT & portable apps is that visually, they look identical. So other than me telling you that these are the MIPS native versions, there really is no way to tell.

Well, other than there is no ntvdm running. There is no WOW needed here!

100% native.

I guess the only other question is that since the Word is 1994, and Excel is from 1995, did they have earlier versions for Windows NT? It seems like everything was finally coming together for RISC NT, except the users. Would a release of 64bit Windows 2000 on Dec Alpha save the platform by bringing a strong 64bit platform with integrated JIT i386 WoW built in? (AXP64 Windows 2000 didn’t use !FX32). I guess we’ll never know.

Adding multiple PCnet NIC’s to a Windows NT 4.0 Terminal server under Qemu

So this is probably nothing that exciting for most people, but for me, I wanted to have a Terminal Server onto a DECnet network. Sure I could have probably just done one nice with tun/tap, dumped all the protocols on there, and called it even. But for some reason I wanted 2 NICs to keep the IP on one side, and DECnet on the other.

One thing I wanted was an internal bridge for DECnet only traffic, and since I just need MSRDP access, SLiRP can handle a single TCP port redirect.

The flags are as always pretty simple once you work them out:

qemu -vga std -cpu pentium -m 384 -vnc :0 -net none \
-hda nt4tse.vmdk \
-device pcnet,netdev=slback \
-device pcnet,netdev=decback \
-netdev tap,ifname=tap1,id=decback,script=/root/nt4tse-up,downscript=/root/nt4tse-down \
-netdev user,id=slback,hostfwd=tcp::3389-10.0.2.15:3389 \
-cdrom Windows\ NT\ 4\ All-In-One\ (Workstation\,\ Server\,\ Terminal\,\ Enterprise).iso

And the two network scripts starting with nt4tse-up:

#!/bin/bash
echo starting $1
ip tuntap add mode tap tap1
ifconfig tap1 up
ifconfig tap1
brctl addif decnet0 tap1
brctl show decnet0
echo done with tuntap

And the nt4tse-down:

#!/bin/bash
echo shutting down $1
ifconfig tap1 down
brctl delif decnet0 tap1
brctl show decnet0
ip tuntap del mode tap tap1
echo done shutting down $1

for completeness here is the bridge config in /etc/netplan/50-cloud-init.yaml

network:
    ethernets:
        ens3:
            addresses:
            - SOMETHING/24
            gateway4: SOMETHING
            match:
                macaddress: 00:f4:c1:56:40:7e
            nameservers:
                addresses:
                - 1.1.1.1
                - 8.8.8.8
    bridges:
      br0:
        dhcp4: no
        addresses: [192.168.23.1/24]
      decnet0:
        dhcp4: no
    version: 2

This way I have an IP bound bridge for things that talk IP, and a raw bridge, decnet0 that has my non IP decnet stuff on there. Naturally it’ll have my SIMH VAX on there:

# brctl show decnet0
bridge name     bridge id               STP enabled     interfaces
decnet0         8000.aede9f227e7b       no              tap0
                                                        tap1

Also the ability to mount directories as fake fat drives had it’s syntax change as well

 -drive file=fat:rw:win95cd

into something like this:

-drive file=fat:rw:dos,id=fat32,format=raw,if=none -device ide-hd,drive=fat32

Not as fun as Win64 Itanium, the earliest AMD64 Windows I can find

It does feel a lot like Windows XP for the Itanium, that strange half world of existence. It’s also from September 2003, the release image being named: 5.2.3790.1069.srv03_spbeta.030905-1850_amd64fre_client-professional_retail_en-us-AB1PXFRE_EN.iso

I’m sure if you google around you can easily find it.

To install you apparently need an early AMD 64 processor, otherwise it’ll trap on the installer. Back in 2004, I got a newly refurbished AMD Athlon 64 3200+ processor, from Tiger Direct. The machine was only a few months old, and I was able to get an early XP build for it. Oddly enough it’s simple enough to install on Qemu. I was able to use 0.90 & 7.20, jumping at extremes, although the PCI NIC IRQ’s do jump around on 0.90 preventing the networking from working.

I had a LOT of trouble getting a bootable hard disk image out of this for some reason. So I’ve found keeping C around 2,000 Megabytes, and installing MS-DOS 5/6 got me a bootable system. Also preserving the FAT disk. Not sure why but doing formats of FAT or NTFS always seemed to result in a non bootable disk

qemu-system-x86_64w.exe -cpu Opteron_G1-v1 -hda 2g.vmdk -m 512 -M pc-i440fx-2.0 -net nic,model=rtl8139,netdev=f00 -netdev user,id=f00,hostfwd=tcp::5555-:3389 -usb -usbdevice tablet  -accel tcg,thread=multi

Special thanks to RoyTam for the suggestion of the USB tablet & turning TCG multithreaded for v7+ of Qemu

Setting up is pretty normal.

You do get 360 days to use the beta. More than enough for simple testing. I’ve seen that the timebomb doesn’t work correctly so it may work forever. But it’s so rough around the edges, I can’t see anyone trying to run this native in 2023.

Notice it’s all AMD branding. Intel officially didn’t have their EMT64 Pentium 4’s, although IBM was pushing Intel hard to get them out the door. And I think they held off on a larger x86_64 launch as Intel had not publicly caved.

And in no time you are up and running. I find the mouse really weird on Qemu, so I always enable the remote desktop function and find it much easier to deal with.

One of the advantages of RDP is that audio redirection does work, so you can play pinball!

One annoying thing (to me) is that the SysFader process will hang all the time locking explorer.exe . Along with that it’ll leave phantom UI elements haning around like the Run… above. Yes, its annoying!

The solution is of course System Properties, and Performance, and either disable the Fade elements, or just turn off all the ‘eye candy’ which basically doesn’t really exist for this release anyways.

While there is some DirectX support, it is most likely just simple GDI passthrough, and of course no acceleration as the OpenGL screensavers run incredibly slow.

And thanks to betawiki.net for some hints & tips. I haven’t tried the VMware path, since AFAIK there is no other NIC drivers for this release.

As mentioned, hardware support is VERY limited. The single audio driver is a MPU401 port. This obviously was meant for an exceptionally limited audience.

The one thing I cannot find, is any version of a Platform SDK that targets AMD64 so early. The earliest I can find is version 14 from 2005.

The 2005 compiler does have this note:

The Microsoft® C/C++ AMD64 Processor Family-targeting compiler is a cross-compiler targeting the AMD64 processor family. The compiler runs on an x86 or AMD64 computer running Microsoft Windows® XP or Microsoft Windows® Server 2003. It is the compiler used for Microsoft® internal development and is used for building Microsoft Windows NT®, Microsoft SQL Server®, and other major applications. For debugging we suggest the use of WinDbg for AMD64. Visual Studio Whidbey will support the use of the Visual Studio debugger for debugging AMD64 applications.

2005-06 – 2944.0 – Platform SDK for Windows Server 2003 SP1 (April 2005 Edition)

With the compiler being:

Microsoft (R) C/C++ Optimizing Compiler Version 14.00.40310.41 for AMD64
Copyright (C) Microsoft Corporation. All rights reserved.

If anyone knows of anything earlier, I’d love to know! If only for the sake of messing around with it.

Networking on AIX 4.3

Well oslevel says 4.3.3.0, but you get the idea.

You’ll need to have the ethernet driver handy, or better loaded. Since I had disabled the NIC on install it’s not loaded. And since I’m still using a cellphone for internet I extracted the file somewhere else and copied in some patches. I’ve managed to reproduce this twice now, so I guess it’s good to go. Apparently, this just works in later versions, but this is very touchy.

To start how I’m running qemu:

./qemu-build/ppc-softmmu/qemu-system-ppc -M 40p -bios q40pofw-serial.rom -serial telnet::4441,server -hda disk0.vmdk-post-install -vga none -nographic -net none -device pcnet,netdev=ne -netdev user,id=ne,hostfwd=tcp::42323-:23 -cdrom /mnt/c/temp/pcnet-aix.iso

With aix booted, extract the tar file from the cdrom:

mount /cdrom
mkdir /pcnet
cd pcnet
tar -xvf /cdrom/pci.tar

Fix your terminal up… if needed (it probably is)

export TERM=vt100
stty erase ^?
export LIBPATH=$LIBPATH:/usr/lib
export PATH=/usr/local/bin:$PATH

Now run smitty -> devices -> after ipl

Change the directory to /pcnet , and let it run It will give errors but thats okay. All being well it won’t crash AIX, otherwise you’ll want to restore your hardisk. You did make a backup beforehand right?!

I don’t think it matters but I run this afterwards:

odmchange -o CuAt -q "name=ent0 and attribute=busio" /cdrom/lance_ch.asc
odmget -q "name=ent0 and attribute=busio" CuAt
shutdown -h now
halting does take forever

As tempting as it is to kill the emulator, wait for it to complete. Otherwise you may have to do the whole thing agian.

For me the value attribute was never preserved, so we get to do it again on reboot/restart:

odmget -q "name=ent0 and attribute=busio" CuAt
mount /cdrom
odmchange -o CuAt -q "name=ent0 and attribute=busio" /cdrom/lance_ch.asc
rmdev -l ent0
mkdev -l ent0
ifconfig en0 10.0.2.15
ping -c 1 10.0.2.2

If everything went well this time you should get a ping reply! Great! Now to configure the system for real.

smitty -> communication -> tcpip -> minimum -> en0

simple slirp

As always I configure my system for slirp. We’re almost there! Now to pad the DNS records for slirp:

cat >> /etc/hosts
10.0.2.2 slirp
10.0.2.3 slirpdns
^D

And now you can reboot!

If everything goes well, you will have a patched up pcnet driver that works (well mine does)

It works!

The big test is to of course reboot. Then you’ll know for sure.

I have tried this a few times, and yeah it can crash when adding the drivers, so I had to restore a few times. I would say 1/3 times worked flawlessly. So be patient. And backup!